Premium
Fire and vegetation change during the Early Pleistocene in southeastern Australia
Author(s) -
Sniderman J. M. Kale,
Haberle Simon G.
Publication year - 2011
Publication title -
journal of quaternary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.142
H-Index - 94
eISSN - 1099-1417
pISSN - 0267-8179
DOI - 10.1002/jqs.1547
Subject(s) - podocarpaceae , sclerophyll , rainforest , vegetation (pathology) , biome , ecology , pleistocene , early pleistocene , macrofossil , geology , biology , paleontology , pollen , ecosystem , medicine , pathology , mediterranean climate
Abstract Early Pleistocene vegetation in upland southeastern Australia included diverse rainforests and sclerophyll forests, which alternated on precessional timescales. The nature and timing of transitions between these biomes, and the role of fire in maintaining or driving transitions between them, are uncertain. Here we present a high‐resolution pollen record from Stony Creek Basin, a small Early Pleistocene palaeolake in southeastern Australia. The pollen record documents a pattern of vegetation change, over ca. 10 ka at ca. 1590–1600 ka, between sclerophyll forests, dominated by Eucalyptus , Callitris (Cupressaceae) or Casuarinaceae, and rainforests dominated by either angiosperms or conifers of the family Podocarpaceae. Transitions between these biomes typically occurred within ca. 1–2 ka. The associated charcoal record suggests that greatest biomass combustion occurred when local vegetation was dominated by Eucalyptus , and the least biomass combustion occurred when local vegetation was dominated by Podocarpaceae. However, local fires burnt in both sclerophyll and angiosperm‐dominated rainforest vegetation, at least once every several centuries. Fire was very rare (less than about one fire per millennium) only when the local vegetation was rainforest dominated by Podocarpaceae. This suggests that fire was an irregular presence in both sclerophyll‐ and angiosperm‐dominated rainforest biomes during the late Neogene, though was largely absent in Podocarpaceae‐dominated rainforests. Copyright © 2011 John Wiley & Sons, Ltd.