Premium
Permineralization process promotes preservation of Holocene macrofossil charcoal in soils
Author(s) -
De Lafontaine Guillaume,
Couillard PierreLuc,
Payette Serge
Publication year - 2011
Publication title -
journal of quaternary science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.142
H-Index - 94
eISSN - 1099-1417
pISSN - 0267-8179
DOI - 10.1002/jqs.1529
Subject(s) - charcoal , macrofossil , taphonomy , holocene , geology , soil water , fragmentation (computing) , vegetation (pathology) , physical geography , paleontology , ecology , soil science , geography , chemistry , biology , medicine , organic chemistry , pathology
The use of macrofossil soil charcoal as a palaeoecological tool to reconstruct past vegetation, climate or fire history has gained much interest in recent years. Yet little is known about taphonomy of charcoal in soils. Here we assessed the putative loss of palaeoecological information due to charcoal fragmentation after burial. We found no significant loss of charcoal mass with time. Instead, we found a significant positive relationship between the mass of charcoal particles and their age. Permineralization of charcoal particles older than ca. 5200 a explained the increased charcoal mass with time in mineral soils. The permineralization process increased the density of charcoal particles (resulting in a twofold particles mass increase) and thus offers a protection against subsequent degradation. Our results suggest high stability of palaeoecological information from charcoal macrofossils buried in mineral soils at least over the Holocene timescale. Copyright © 2011 John Wiley & Sons, Ltd.