z-logo
Premium
Combined nitrogen input from legume residues and fertilizer improves early nitrogen supply and uptake by wheat
Author(s) -
Muschietti-Piana Pilar,
McBeath Therese M.,
McNeill Ann M.,
Cipriotti Pablo A.,
Gupta Vadakattu V. S. R.
Publication year - 2020
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.202000002
Subject(s) - agronomy , fertilizer , nitrogen , growing season , biomass (ecology) , legume , environmental science , field experiment , soil water , chemistry , biology , soil science , organic chemistry
Soil nitrogen (N) supply for wheat N uptake can be manipulated through legume and fertilizer N inputs to achieve yield potential in low‐rainfall sandy soil environments. Field experiments over 2 years (2015–2016) were conducted at 2 different sites in a low‐rainfall sandy soil to determine the soil N supply capacity relative to wheat N uptake at key growth stages, after a combination of crop residue (removed, wheat or lupin) and fertilizer N (nil, low or high N) treatments were manipulated to improve wheat yield. We measured the temporal patterns of the soil profile mineral N and PAW to 100 cm depth, wheat aerial biomass and N uptake in both years. In 2016 we also measured the disease incidence as a key environmental variable. There was 35 kg ha −1 more soil mineral N to 100 cm depth following lupin than wheat residues at the end of the fallow on average in both years. In a below average rainfall season, wheat biomass produced on lupin residues was responsive to N input with soil profile mineral N depleted by increased crop N uptake early in the season. In an above average rainfall season, a higher soil mineral N supply increased actual and potential grain yield, total biomass, N uptake, harvest index and water use efficiency of wheat, regardless of the source of N. Our study showed that the combination of lupin residues with high N rate increased soil profile mineral N at early growth stages, providing a greater soil N supply at the time of high wheat N demand, and the inclusion of a legume in the rotation is critical for improving the N supply to wheat, with added disease break benefits in a low‐rainfall sandy soil environment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom