z-logo
Premium
Combined nitrogen input from legume residues and fertilizer improves early nitrogen supply and uptake by wheat
Author(s) -
Muschietti-Piana Pilar,
McBeath Therese M.,
McNeill Ann M.,
Cipriotti Pablo A.,
Gupta Vadakattu V. S. R.
Publication year - 2020
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.202000002
Subject(s) - agronomy , fertilizer , nitrogen , growing season , biomass (ecology) , legume , environmental science , field experiment , soil water , chemistry , biology , soil science , organic chemistry
Soil nitrogen (N) supply for wheat N uptake can be manipulated through legume and fertilizer N inputs to achieve yield potential in low‐rainfall sandy soil environments. Field experiments over 2 years (2015–2016) were conducted at 2 different sites in a low‐rainfall sandy soil to determine the soil N supply capacity relative to wheat N uptake at key growth stages, after a combination of crop residue (removed, wheat or lupin) and fertilizer N (nil, low or high N) treatments were manipulated to improve wheat yield. We measured the temporal patterns of the soil profile mineral N and PAW to 100 cm depth, wheat aerial biomass and N uptake in both years. In 2016 we also measured the disease incidence as a key environmental variable. There was 35 kg ha −1 more soil mineral N to 100 cm depth following lupin than wheat residues at the end of the fallow on average in both years. In a below average rainfall season, wheat biomass produced on lupin residues was responsive to N input with soil profile mineral N depleted by increased crop N uptake early in the season. In an above average rainfall season, a higher soil mineral N supply increased actual and potential grain yield, total biomass, N uptake, harvest index and water use efficiency of wheat, regardless of the source of N. Our study showed that the combination of lupin residues with high N rate increased soil profile mineral N at early growth stages, providing a greater soil N supply at the time of high wheat N demand, and the inclusion of a legume in the rotation is critical for improving the N supply to wheat, with added disease break benefits in a low‐rainfall sandy soil environment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here