Premium
Interactive effects of biochar and micronutrients on faba bean growth, symbiotic performance, and soil properties
Author(s) -
Mohamed Ibrahim,
El-Meihy Rasha,
Ali Maha,
Chen Fang,
Raleve David
Publication year - 2017
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.201700293
Subject(s) - biochar , vicia faba , amendment , agronomy , chemistry , straw , biology , organic chemistry , pyrolysis , political science , law
Leguminous crops are significantly involved in the global symbiotic biological N 2 Fixation (BNF), an eco‐friendly process in the agriculture system. Biochar is considered as a vital amendment in improving growth and quality of crops and soils. Few investigations have been conducted to determine the combination effect of biochar with microelements on growth of legumes and soil properties. This study was designed to study the effect of soybean straw‐derived biochar (SSDB) with or without microelements on soil microbial and chemical properties, growth, yield, and seed chemical composition of faba bean ( Vicia faba L.). Results revealed that dehydrogenase (DHA) and phosphatase (P‐ase) activities were markedly improved with the increase of SSDB rates under addition of microelements and their highest values were recorded after 90 d. Significant increases were noticed in nodulation activities, nodulation numbers (30.1–72.8), concentrations of N (1.62–1.93%), P (0.15–0.21%), and K (0.53–0.67%), and seed chemical constituents due to the addition of SSDB in the presence of microelements. Moreover, the combination of biochar with microelements caused significant changes in microbial counts. Overall, this investigation shows the potential and role of SSDB in enhancing the growth quality of faba bean seeds as well as an improvement of soil characteristics.