Premium
Agronomic effectiveness of rock phosphate combined with nitrogen sources in spot application: A pot experiment
Author(s) -
Valadares Rafael V.,
Cantarutti Reinaldo B.,
Mattiello Edson M.,
Vieira Rogério F.
Publication year - 2017
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.201600037
Subject(s) - chemistry , randomized block design , phosphorite , sowing , context (archaeology) , phosphate , nitrogen , soil water , oxisol , ammonium sulfate , agronomy , mineralogy , environmental science , soil science , geology , paleontology , organic chemistry , chromatography , biology
Rock phosphate (RP) shows reduced dissolution in soils amended with limestone and when applied through spot application. A simple way to improve RP efficiency under these unfavorable conditions may be the combination with nitrogen (N) fertilizers which can increase the solubilization of apatite minerals and/or stimulate P uptake. In this context, we evaluated the agronomic effectiveness of a RP from Bayóvar, Peru (BY), combined with different N sources in spot application, in a clayey Oxisol (Typic Hapludox). The pot experiment consisted of a factorial scheme (3 × 2 × 2+4) in randomized block design with four replications. Treatments consisted of BY combined with three N sources (ammonium sulfate–BY+AS; urea–BY+U; potassium nitrate–BY+KN), in two forms (granulated or powdered), and in two N : P molar ratios (0.5 : 1.0 or 1 : 1) and four additional treatments [control: without P; monoammonium phosphate (MAP); powdered BY; granulated BY]. The products were incorporated into a 50 cm 3 cylindrical soil volume (central and upper position in the pot: diameter 17 cm and height 15 cm) with three maize plants ( Zea mays L.). Above‐ground biomass was sampled after 42 d after sowing, analyzed for N and P concentrations to calculate N and P uptake. Soil samples were taken from the cylindrical soil volume and measured for RP dissolution (ΔCa index), P availability (P‐resin index), and soil pH. Application of MAP increased soil P availability about 11 times compared with BY treatments. As a result, maize plants grew 3.8 times and absorbed 7.3 and 3.3 times more P and N compared to those fertilized with BY combined with N fertilizers. Compound fertilizers BY+AS and BY+KN had the same effect on N and P uptake, presenting an effectiveness about 12 and 19% greater than pure BY, respectively. Compound fertilizers with BY+AS were more effective in powdered form (with no N/P ratio effect), while BY+KN was more effective in granulated form and in 1 : 1 N : P ratio. BY+U combinations were less efficient in promoting plant P bioavailability than the other N sources. We conclude that Bayóvar RP has a low agronomic effectiveness for spot application, even when combined with N.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom