z-logo
Premium
Production and evaluation of potassium fertilizers from silicate rock
Author(s) -
Santos Wedisson Oliveira,
Mattiello Edson Marcio,
Vergutz Leonardus,
Costa Rodolfo Fagundes
Publication year - 2016
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.201500484
Subject(s) - potassium silicate , potassium , chemistry , calcination , citric acid , mineralogy , silicate minerals , fertilizer , clay minerals , nuclear chemistry , agronomy , silicate , food science , biochemistry , organic chemistry , biology , catalysis
Rising price and limited geographical availability of traditional sources of potassium (K) fertilizers have stimulated a search for alternative K sources in different parts of the world. We evaluated mineral transformations and agronomic properties of an alternative source of K produced through thermal and chemical treatment of the verdete rock (VR). Chemical and mineralogical characteristics were evaluated before and after each treatment. Four K sources (verdete rock, KCl, acidified verdete, and calcinated verdete) were applied to a Typic Hapludox at different rates. Eucalyptus and sequentially cropped maize and grass were grown in the treated soils. Verdete rock, which contained glauconite and microcline as K crystalline minerals, had very low solubility in water and in citric acid. Thermal and chemical treatments increased the concentration of water soluble K and citric acid soluble K. These treatments also caused crystalline K minerals to collapse and form sylvite and arcanite. Untreated verdete rock was not suitable as a K source for maize ( Zea mays  L.) and eucalyptus ( Eucaliptus urograndis I144). Thermal and chemical treatments increased agronomic performance of VR to be similar to KCl. When K was applied as K‐calcined verdete, 82% of the total K was recovered in maize and grass cultivations. Less K was recovered in plant following addition of K‐acidified verdete and KCl (72% and 77%, respectively). Potassium recoveries by eucalyptus were about 52, 53, and 60% of the amount applied of calcined verdete, acidified verdete, and KCl, respectively. Both calcination and thermal treatment increased the K uptake and dry matter production for all plant species tested to be similar to KCl suggesting that this silicate rock could be beneficiated to be an effective K fertilizer.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom