Premium
Analysis of amino acid uptake and translocation in Arabidopsis with a low‐cost hydroponic system
Author(s) -
Pratelli Réjane,
Boyd Shelton,
Pilot Guillaume
Publication year - 2016
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.201500464
Subject(s) - amino acid , arabidopsis , shoot , glutamine , biochemistry , amino acid transporter , mutant , chromosomal translocation , arabidopsis thaliana , chemistry , aromatic amino acids , biology , gene , botany , transporter
In soils, amino acids may be an important source of nitrogen for plants, at least in those where organic matter is not quickly degraded. The physiology of uptake of amino acids by roots was mainly studied in the 70's and 80's, before genes encoding amino acid importers were cloned in the 90's. While two families of amino acid transporters have been identified, yielding a total of about 100 genes, the role of each member is yet to be elucidated. As a tool for studying the role of amino acid transporters from Arabidopsis we set up a new hydroponic system suitable for radioisotope use. This system enables reproducible amino acid uptake by roots and estimation of the transport to the shoots of the amino acid taken up. We show that the rates of glutamine (Gln) uptake by wild‐type roots and transfer to the shoots were linear, and that other tested amino acids were translocated to the shoots with lower efficiency than Gln. A T‐DNA insertion mutant for a Gln exporter was compared to the wild‐type plants. Gln uptake and transfer were similar in both genotypes, showing that the suppression of the exporter did not affect uptake or transfer of amino acids to the shoots. The main advantage of the hydroponic system presented here is that all the materials used to grow Arabidopsis are virtually free and can therefore be discarded, a useful feature when working with radioactivity.