Premium
Utilization of organic phosphorus sources by oilseed rape, sunflower, and soybean
Author(s) -
Belinque Hernan,
Pucheu Norma,
Kerber Norma,
Rubio Gerardo
Publication year - 2015
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.201400301
Subject(s) - sunflower , helianthus , inoculation , agronomy , helianthus annuus , phosphorus , canola , phosphate solubilizing bacteria , brassica , pseudomonas fluorescens , chemistry , crop , horticulture , phosphate , biofertilizer , biology , rhizobacteria , bacteria , rhizosphere , organic chemistry , genetics
We evaluated the ability of Brassica napus L. (oilseed rape), Helianthus annus L. (sunflower), and Glycine max L. (soybean) plants grown inoculated with or without bacteria to utilize organic P sources. Plants were supplied with inorganic (dibasic sodium phosphate) and organic P sources (phytate and glucose phosphate) at three concentrations and grown for 40 d under sterile conditions. Three inoculation treatments were compared: control (non‐inoculated plants), inoculation with Bacillus amyloliquefaciens BNM340, and inoculation with Pseudomonas fluorescens BNM296 (two bacteria with proven phytase activity). Oilseed rape, sunflower and soybean could utilize organic P sources. For example, when phytate (0.5 mM) P was used as the external P source, the increase factors over the no‐P treatments were 4.5, 1.4, and 1.4 for oilseed rape, sunflower, and soybean P uptake, respectively. When glucose 1‐phosphate disodium salt (G1P, 0.5 mM) was the P source, the increase factors were 8.8, 1.7, and 1.9 respectively. Positive responses to the organic P sources were found for the biomass accumulation of oilseed rape and soybean but not for sunflower. The inoculation with bacteria did not exert a promoting effect on P uptake. We demonstrate that the three species can effectively use organic P sources. The existence of crop plants that are more efficient in the utilization of different soil P sources would be particularly beneficial to improve P recycling and use of P fertilizers in agriculture.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom