Premium
Organic matter returns to soils must be higher under organic compared to conventional farming
Author(s) -
Leithold Günter,
Hülsbergen KurtJürgen,
Brock Christopher
Publication year - 2015
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.201400133
Subject(s) - organic farming , soil organic matter , environmental science , organic matter , arable land , soil water , crop rotation , agriculture , productivity , fertilizer , agronomy , agricultural engineering , crop , chemistry , economics , soil science , engineering , geography , macroeconomics , organic chemistry , biology , archaeology
Abstract The aim of this paper is to discuss the demand of fresh organic matter (FOM) supply to maintain soil organic matter (SOM) levels and productivity of arable soils under organic management. The basic question is whether the different frame conditions in organic vs. conventional farming result in a different and system‐specific FOM demand. If this is the case, it would follow that the farming system has to be considered in the calculation of SOM balances. SOM balances are the most common decision support tools in organic matter management. A conversion to organic farming in practice usually leads to an increase of SOM levels as well as soil microbial activity over time. The system‐specific driver of this effect is the indispensable extension of the share of (perennial) legumes in crop rotations at the expense of non‐legumes such as cereals, row crops, and maize. Extended legume cropping is essential for N supply in crop rotations as the import of N fertilizer in total is limited by organic farming regulations and mineral N fertilizer may not be used at all. Based on this characteristic of organic management, we argue that the demand of FOM supply to soils must be higher than in conventional crop production. The most relevant factors are (1) the non‐existence of mineral N fertilizer as an external N source that supports the maintenance of SOM by decreasing the demand for SOM‐N, (2) benefits of increasing SOM stocks and turnover for soil productivity under organic management, and, (3) increased mass‐losses of FOM and easily degradable SOM compartments due to higher microbial activity in soils. These effects have to be quantified and must be considered in SOM balances in order to avoid misleading assessments and erroneous decisions.