Premium
Field‐scale potassium and phosphorus fluxes in the bioenergy crop switchgrass: Theoretical energy yields and management implications
Author(s) -
Woodson Patrick,
Volenec Jeffrey J.,
Brouder Sylvie M.
Publication year - 2013
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.201200294
Subject(s) - panicum virgatum , agronomy , bioenergy , biomass (ecology) , energy crop , environmental science , phosphorus , soil fertility , ethanol fuel , forage , soil water , biofuel , chemistry , biology , microbiology and biotechnology , soil science , organic chemistry
Our understanding of how mineral nutrition affects productivity and composition of bioenergy crops grown on marginal lands remains fragmented and incomplete despite world‐wide interest in using herbaceous biomass as an energy feedstock. Our aim was to determine switchgrass ( Panicum virgatum L.) biomass production and maize ( Zea mays L.) grain yield on marginal soils used previously to evaluate the effect of soil phosphorus (P) and potassium (K) fertility on alfalfa ( Medicago sativa L.) forage production. Grain yield of maize was reduced on P‐ and/or K‐limited plots that also impaired alfalfa forage yield, whereas switchgrass biomass yields were high even in plots possessing very low available P (4 mg kg –1 ) and K (< 70 mg kg –1 ) levels. Linear‐plateau regression models effectively described the relationship of soil test P and K to tissue P and K concentrations, and tissue P and K concentrations accurately predicted removal of P and K in harvest biomass. However, neither soil‐test P and K, nor tissue P and K concentrations were effective as diagnostics for predicting switchgrass biomass yield nor could soil tests and their change with cropping predict nutrient removal. Concentrations of cellulose, hemicellulose, lignin, and ash were not influenced by P and K nutrition. Predicted bio‐ethanol production was closely associated with biomass yield whereas high biomass K concentrations reduced estimated bio‐oil production per hectare by as much as 50%. Additional research is needed to identify diagnostics and managements to meet the bioenergy production co‐objectives of having high yield of biomass with very low mineral nutrient concentrations (especially K) while sustaining and improving the fertility of marginal soils.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom