Premium
A method to generate soilscapes from soil maps
Author(s) -
Schmidt Karsten,
Behrens Thorsten,
Friedrich Klaus,
Scholten Thomas
Publication year - 2010
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.200800208
Subject(s) - segmentation , soil map , feature (linguistics) , homogeneous , cartography , computer science , remote sensing , geography , soil science , environmental science , artificial intelligence , mathematics , soil water , linguistics , philosophy , combinatorics
Digital soil mapping for large areas is challenging if mapping resolution should be as high as possible and sampling should be as sparse as possible. Generally, the more complex the soil associations in a landscape, the more samples are required to systematically cover the entire feature space. Moreover, regions should be modeled separately if the patterns of spatial variation vary on subregion level. A systematic segmentation of a landscape into soilscapes is additionally important for a feasible application of soil‐sensing approaches. In this paper, we introduce a semiautomated approach to segment nominal spatial datasets based on the local spatial frequency distribution of the mapping units. The aim is to provide homogeneous and nonfragmented segments with smoothed boundaries. The methodological framework for the segmentation comprises different spatial and nonspatial techniques and focuses mainly on a moving‐window analysis of the local frequency distribution and a k‐means cluster analysis. Based on an existing soil map (1:50,000), we derived six segments for the Nidda catchment (Central Hesse, Germany), comprising 1600 km 2 . As segmentation is based on a soil map, soilscapes are derived. In terms of the feature space, these soilscapes show a higher homogeneity compared to the entire landscape. Advantages compared to an existing map of landscape units are discussed. Segmenting a landscape as introduced in this study might also be of importance for other disciplines and can be used as a first step in biodiversity analysis or setting up environmental‐monitoring sites.