z-logo
Premium
Determination of a critical dilution curve for nitrogen concentration in cotton
Author(s) -
Xiaoping Xue,
Jianguo Wang,
Zhiwei Wang,
Wenqi Guo,
Zhiguo Zhou
Publication year - 2007
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.200620627
Subject(s) - dilution , nitrogen , biomass (ecology) , dry matter , shoot , chemistry , isotope dilution , agronomy , botany , horticulture , zoology , biology , chromatography , thermodynamics , physics , mass spectrometry , organic chemistry
Several nitrogen (N)‐rate field experiments were carried out in cotton to define dilution curves for critical N concentrations in individual plants ( i.e. , the minimum N concentration required for maximum growth at any growth stage). Nitrogen application rate had a significant effect on aboveground dry matter, N accumulation, and N concentration. As expected, shoot N concentration in plants decreased during the growing period. These results support the concept of critical N concentration in shoot biomass of single plants as described by Lemaire et al. (2007) and reveal that a dilution curve for critical N concentrations in cotton plants can be described by a power equation. The pattern of critical–N concentration dilution curves was consistent across the two sites. Nitrogen concentration for a given biomass varied greatly with the supply of N. After initial flowering, the N‐nutrition index (NNI) for aboveground biomass of individual plants increased with increasing N rates. Relationships between plant total N uptake and accumulated dry matter in the aboveground biomass can be described by the allometric‐relation equations for each dose of N. Nitrogen‐dilution curves can be used as a tool for diagnosing the status of N in cotton from initial flowering to boll opening. The relationship can also be used in the parameterization and validation of growth models for predicting the N response and/or N requirement of cotton.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom