z-logo
Premium
Iron toxicity in rice—conditions and management concepts
Author(s) -
Becker Mathias,
Asch Folkard
Publication year - 2005
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.200520504
Subject(s) - agronomy , cultivar , toxicity , soil water , micronutrient , yield (engineering) , chemistry , biology , ecology , materials science , organic chemistry , metallurgy
Iron toxicity is a syndrome of disorder associated with large concentrations of reduced iron (Fe 2+ ) in the soil solution. It only occurs in flooded soils and hence affects primarily the production of lowland rice. The appearance of iron toxicity symptoms in rice involves an excessive uptake of Fe 2+ by the rice roots and its acropetal translocation into the leaves where an elevated production of toxic oxygen radicals can damage cell structural components and impair physiological processes. The typical visual symptom associated with these processes is the “bronzing” of the rice leaves and substantial associated yield losses. The circumstances of iron toxicity are quite well established. Thus, the geochemistry, soil microbial processes, and the physiological effects of Fe 2+ within the plant or cell are documented in a number of reviews and book chapters. However, despite our current knowledge of the processes and mechanisms involved, iron toxicity remains an important constraint to rice production, and together with Zn deficiency, it is the most commonly observed micronutrient disorder in wetland rice. Reported yield losses in farmers' fields usually range between 15% and 30%, but can also reach the level of complete crop failure. A range of agronomic management interventions have been advocated to reduce the Fe 2+ concentration in the soil or to foster the rice plants' ability to cope with excess iron in either soil or the plant. In addition, the available rice germplasm contains numerous accessions and cultivars which are reportedly tolerant to excess Fe 2+ . However, none of those options is universally applicable or efficient under the diverse environmental conditions where Fe toxicity is expressed. Based on the available literature, this paper categorizes iron‐toxic environments, the steps involved in toxicity expression in rice, and the current knowledge of crop adaptation mechanisms in view of establishing a conceptual framework for future constraint analysis, research approaches, and the targeting of technical options.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here