z-logo
Premium
Long‐term effects of cropped vs . fallow and fertilizer amendments on soil organic matter II. Nitrogen
Author(s) -
Singh Antil Rajinder,
Gerzabek Martin H.,
Haberhauer Georg,
Eder Gerfried
Publication year - 2005
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.200421634
Subject(s) - cambisol , manure , agronomy , straw , fertilizer , mineralization (soil science) , cover crop , chemistry , zoology , silt , organic matter , manure management , stover , soil management , environmental science , nitrogen , field experiment , soil water , soil science , biology , organic chemistry , paleontology
Abstract The present study evaluated the effect of fertilizer amendments (organic manure and mineral fertilizers), management practices (fallow and untilled vs. cropped and tilled) on changes of N in bulk soil and N associated with different particle‐size fractions. The long‐term field experiment was conducted since 1962 in Gumpenstein, Austria, on a Dystric Cambisol. The N content of the topsoils changed distinctively during 28 and 38 yr of treatments under both fallow and cropped management practices. Highest increase in total N content was found in animal‐manure (liquid)‐treated plots. The remaining ranking was: animal manure (solid) > cattle slurry > half cattle slurry + straw = PK = NPK. Quite short N‐half‐life values of around 2 yr were found for the cattle‐slurry application, while animal manure exhibited longer N‐half‐lives of around 8 yr. Crop removal of N and mineralization losses in cropped plots obviously were higher than N losses from the bare soil plots lacking a plant cover to keep N in the system. This was confirmed by a consistent shift in the natural 15 N abundances. Comparing the mean N contribution of particle‐size fractions to the total N amounts revealed the following ranking after 28 and 38 yr of different treatments: silt > clay > fine sand > coarse sand, with small exceptions. Particle‐size separates showed more significant responses to changes in the N dynamics of the system due to the various treatments than the bulk soil and can be regarded as the better indicators in this respect.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here