z-logo
Premium
Root morphology of Thlaspi goesingense Hálácsy grown on a serpentine soil
Author(s) -
Himmelbauer Margarita L.,
Puschenreiter Markus,
Schnepf Andrea,
Loiskandl Willibald,
Wenzel Walter W.
Publication year - 2005
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.200420434
Subject(s) - hyperaccumulator , shoot , dry weight , root system , biomass (ecology) , horticulture , chemistry , botany , morphology (biology) , biology , agronomy , heavy metals , phytoremediation , environmental chemistry , genetics
The contribution of root morphology to enhanced uptake of heavy metals by hyperaccumulating plants is not well understood. The objective of this study was to describe root‐morphological characteristics of the natural nickel (Ni) hyperaccumulator Thlaspi goesingense Hálácsy. Plant samples were collected from a serpentine site near Redlschlag (East Austria), characterized by large soil Ni concentrations. Roots were evaluated for mass, length, surface area, diameter, and related ratios using an image‐analysis approach. Results showed that on the indigenous site, T. goesingense Hálácsy developed a fine‐branched root system, confined within a shallow soil depth. Coarse roots (>1 mm) accounted for about 60% of the total root mass (fresh and dry), while their contribution to the surface area and especially to the length of the system was small. Conversely, fine roots (<1 mm) represented 99% of the total root length and 88% of the surface area. The largest proportion of root length and area was found in the smallest diameter class of 0.0 to 0.5 mm. Shoot‐biomass production per unit root was high, in spite of the adverse soil conditions. Roots accounted for 8% of the total plant mass and about 4% of the total Ni accumulation. We conclude that the root system of natively grown T. goesingense Hálácsy exhibits a potential for enhanced Ni extraction from soil, since it mainly consists of very fine roots with extended absorptive area.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here