Premium
Effect of crop type and crop growth on atmospheric nitrogen deposition
Author(s) -
Böhme Frank,
Merbach Ines,
Weigel Annett,
Russow Rolf
Publication year - 2003
Publication title -
journal of plant nutrition and soil science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 1436-8730
DOI - 10.1002/jpln.200321112
Subject(s) - nitrogen , hectare , crop , agronomy , biomass (ecology) , deposition (geology) , environmental science , lolium perenne , atmosphere (unit) , chemistry , poaceae , biology , ecology , meteorology , geography , paleontology , organic chemistry , sediment , agriculture
Varying atmospheric nitrogen (N) depositions for different crops were observed at Bad Lauchstädt (Saxony‐Anhalt, Germany) when using the ITNI system (ITNI = Integrated Total Nitrogen Input), which is based on the 15 N isotope dilution method. These differences were only partly explained by climatic influences. The effects of crops on the atmospheric N deposition measured by the ITNI system are discussed. For this purpose, data of six different plant species recorded in 1998 were re‐analyzed. It was found that the airborne N input is closely correlated with the morphology and metabolism of crops. Daily atmospheric N depositions of 129.0–360.8 g per hectare were measured for the plant species used. The nutritional supply of plants, especially with N, is another factor of influence on the N input from the atmosphere which should be considered. To investigate this aspect, a pot experiment was conducted with the grass Lolium perenne at three different N levels. An increase in the airborne N uptake (corresponding to N fertilization) was observed as biomass production rose.