z-logo
Premium
Genesis and dynamics of an oxic dystrochrept and a typic haploperox from ultrabasic rock in the tropical rain forest climate of south‐east Brazil
Author(s) -
Pfisterer Ulrich,
Blume HansPeter,
Kanig Martin
Publication year - 1996
Publication title -
zeitschrift für pflanzenernährung und bodenkunde
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 87
eISSN - 1522-2624
pISSN - 0044-3263
DOI - 10.1002/jpln.1996.3581590107
Subject(s) - saprolite , weathering , oxisol , udic moisture regime , geology , geochemistry , parent rock , kaolinite , laterite , soil water , soil horizon , ultisol , pedogenesis , clay minerals , soil science , mineralogy , chemistry , nickel , organic chemistry , loam
Oxisols are a product of long and intense weathering. Their actual characteristics can neither be traced back to a certain climatic period, nor do they reveal the present soil‐forming factors. In this paper, therefore, a reconstruction of the soil genesis of a strongly weathered Oxisol is attempted by comparing the present mineralogical status and the recent dynamics of selected elements with a nearby Inceptisol from the same catena. The parent rock of both soils is serpentinized dunite with nepheline‐syenitic veins; the soil moisture regime is udic. Chemical and mineralogical parameters, as well as the concentration of elements in the soil solution of a Typic Haploperox and an Oxic Dystrochrept from the same catena were analyzed for one year. The dynamics of Si and Mg strongly depended on the state of weathering. In the saprolite of the Dystrochrept, Si is partially removed and partially fixed by the formation of quartz and mixed layer minerals. Mg is first fixed in mixed layer minerals, but is during consecutive weathering leached from the transition zone from saprolite to the oxic horizon. Due to the high redox potential, Fe is not soluble, forming goethite in the upper part of the saprolite. Al is also not removed and is finally fixed in kaolinite. In the weathered upper part of both profiles the concentration of Al, Si, Mg and Fe in the soil solution is too low to perceive a further weathering. The present dynamics of Fe, Al, Mg and Si and the mineralogical status of the Dystrochrept indicate that these processes are similar to those that have led to the formation of the Haploperox. The soils, therefore, developed exclusively by the relative enrichment of Al and Fe, the partial loss of Si and the almost complete loss of Mg. Desilification and ‘laterisation’ are hence processes occurring also presently under a tropical rain forest climate.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here