z-logo
Premium
Titanium particles generated during ultrasonic scaling of implants
Author(s) -
Harrel Stephen K.,
Wilson Thomas G.,
Pandya Mirali,
Diekwisch Thomas G. H.
Publication year - 2019
Publication title -
journal of periodontology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.036
H-Index - 156
eISSN - 1943-3670
pISSN - 0022-3492
DOI - 10.1002/jper.18-0230
Subject(s) - ultrasonic sensor , titanium , materials science , implant , coolant , biomedical engineering , coating , ultrasound , composite material , metallurgy , surgery , medicine , mechanical engineering , engineering , radiology
Abstract Background There is growing concern that titanium particles may play a role in peri‐implant breakdown. Ultrasonic scalers are routinely used in the debridement of peri‐implant lesions. This in vitro study is designed to evaluate if titanium particles are produced when an ultrasonic scaler is used on an implant. Methods New sandblasted, large grit, acid etched (SLA) coated implants were subjected to ultrasonic scaling with stainless steel, titanium, and PEEK plastic tips. The implants were placed in a holding device and the ultrasonic scaler was positioned on the SLA surface under 25 grams of pressure. The implants were subjected to 30 scaling motions. The ultrasonic coolant water was collected and the number of metallic particles were counted under a light microscope. The particles were confirmed to be titanium via elemental analysis. The implants were visually evaluated for damage to the SLA coating. Results No metallic particles were detected in the water supplied to the ultrasonic scalers (passive control). Metallic particles were detected when implants were subjected to the ultrasonic coolant water only without the scaler tip touching the implant (active control). All implants that were scaled produced metallic particles and showed easily detectable damage to the SLA layer. Conclusions All ultrasonic scaling caused the production of titanium particles and caused damage to the SLA coating of the implant. Ultrasonic scalers should be used with great caution in the treatment of peri‐implant conditions and care should be taken to not touch the SLA surface of the implant.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here