z-logo
Premium
Multi‐Scale Loading and Damage Mechanisms of Plantaris and Rat Tail Tendons
Author(s) -
Lee Andrea H,
Elliott Dawn M
Publication year - 2019
Publication title -
journal of orthopaedic research®
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.24309
Subject(s) - tendinopathy , tendon , load bearing , weight bearing , strain (injury) , medicine , scale (ratio) , biomedical engineering , anatomy , materials science , surgery , composite material , physics , quantum mechanics
Tendinopathy, degeneration of the tendon that leads to pain and dysfunction, is common in both sports and occupational settings, but multi‐scale mechanisms for tendinopathy are still unknown. We recently showed that micro‐scale sliding (shear) is responsible for both load transfer and damage mechanisms in the rat tail tendon; however, the rat tail tendon is a specialized non‐load‐bearing tendon, and thus the load transfer and damage mechanisms are still unknown for load‐bearing tendons. The objective of this study was to investigate the load transfer and damage mechanisms of load‐bearing tendons using the rat plantaris tendon. We demonstrated that micro‐scale sliding is a key component for both mechanisms in the plantaris tendon, similar to the tail tendon. Namely, the micro‐scale sliding was correlated with applied strain, demonstrating that load was transferred via micro‐scale sliding in the plantaris and tail tendons. In addition, while the micro‐scale strain fully recovered, the micro‐scale sliding was non‐recoverable and strain‐dependent, and correlated with tissue‐scale mechanical parameters. When the applied strain was normalized, the % magnitudes of non‐recoverable sliding was similar between the plantaris and tail tendons. Statement of clinical significance: Understanding the mechanisms responsible for the pathogenesis and progression of tendinopathy can improve prevention and rehabilitation strategies and guide therapies and the design of engineered constructs. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1827–1837, 2019

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here