Premium
Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds
Author(s) -
Reitmaier Sandra,
Kovtun Anna,
Schuelke Julian,
Kanter Britta,
Lemm Madlin,
Hoess Andreas,
Heinemann Sascha,
Nies Berthold,
Ignatius Anita
Publication year - 2018
Publication title -
journal of orthopaedic research®
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.23623
Subject(s) - strontium , resorption , biomedical engineering , bone resorption , scaffold , bone healing , chemistry , bone remodeling , strontium ranelate , calcium , biocompatibility , osteoclast , osseointegration , osteoblast , materials science , in vivo , osteoporosis , implant , anatomy , surgery , in vitro , medicine , pathology , biochemistry , organic chemistry , biology , microbiology and biotechnology
Calcium phosphate cements (CPCs) are widely used for bone‐defect treatment. Current developments comprise the fabrication of porous scaffolds by three‐dimensional plotting and doting using biologically active substances, such as strontium. Strontium is known to increase osteoblast activity and simultaneously to decrease osteoclast resorption. This study investigated the short‐ and long‐term in vivo performances of strontium(II)‐doted CPC (SrCPC) scaffolds compared to non‐doted CPC scaffolds after implantation in unloaded or load‐bearing trabecular bone defects in sheep. After 6 weeks, both CPC and SrCPC scaffolds exhibited good biocompatibility and osseointegration. Fluorochrome labeling revealed that both scaffolds were penetrated by newly formed bone already after 4 weeks. Neither strontium doting nor mechanical loading significantly influenced early bone formation. In contrast, after 6 months, bone formation was significantly enhanced in SrCPC compared to CPC scaffolds. Energy dispersive X‐ray analysis demonstrated the release of strontium from the SrCPC into the bone. Strontium addition did not significantly influence material resorption or osteoclast formation. Mechanical loading significantly stimulated bone formation in both CPC and SrCPC scaffolds after 6 months without impairing scaffold integrity. The most bone was found in SrCPC scaffolds under load‐bearing conditions. Concluding, these results demonstrate that strontium doting and mechanical loading additively stimulated bone formation in CPC scaffolds and that the scaffolds exhibited mechanical stability under moderate load, implying good clinical suitability. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:106–117, 2018.