z-logo
Premium
Evaluation of genipin for stabilization of decellularized porcine cartilage
Author(s) -
Elder Steven,
Pinheiro Amanda,
Young Christian,
Smith Preston,
Wright Emily
Publication year - 2017
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.23483
Subject(s) - genipin , decellularization , collagenase , chemistry , cartilage , biomedical engineering , glutaraldehyde , materials science , tissue engineering , anatomy , medicine , chitosan , enzyme , biochemistry , chromatography
We speculate that an acellular osteochondral xenograft may be a good alternative to allografts for repair of focal articular cartilage lesions. In order to make a xenograft resistant to enzymatic degradation and to prevent a chronic immune response it may be beneficial to stabilize it through crosslinking. The concept is analogous to treatment of porcine bioprosthetic heart valves with glutaraldehyde. The purpose of this study was to evaluate genipin, a natural crosslinking agent with low cytotoxicity, for stabilization of decellularized cartilage. Porcine articular cartilage discs were decellularized in SDS and nucleases and then crosslinked in genipin. The utility of genipin was determined from its effects on degree of crosslinking, mechanical properties, dimensional stability, enzymatic resistance, and in vitro biocompatibility. Degree of crosslinking, compressive moduli, and collagenase resistance varied over a wide range depending on genipin concentration. The equilibrium compressive modulus could be increased from approximately 50% to more than 120% that of native cartilage, and the time to complete degradation by collagenase could be extended from less than 12 h to more than 15 days. Radial shrinkage of approximately 4% was observed at a genipin concentration of 0.1% wt/vol, and cartilage coefficient of friction against glass increased in a concentration‐dependent manner. Autologous chondrocytes displayed little difference in viability or their ability to attach and spread over the surface of genipin‐fixed cartilage compared to non‐crosslinked cartilage during 6 weeks of culture. These results indicate that genipin may be efficacious for stabilization of a decellularized porcine osteochondral xenograft. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1949–1957, 2017.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here