z-logo
Premium
Pulsed electromagnetic field therapy improves tendon‐to‐bone healing in a rat rotator cuff repair model
Author(s) -
Tucker Jennica J.,
Cirone James M.,
Morris Tyler R.,
Nuss Courtney A.,
Huegel Julianne,
Waldorff Erik I.,
Zhang Nianli,
Ryaby James T.,
Soslowsky Louis J.
Publication year - 2017
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.23333
Subject(s) - rotator cuff , medicine , tendon , rat model , bone healing , surgery
Rotator cuff tears are common musculoskeletal injuries often requiring surgical intervention with high failure rates. Currently, pulsed electromagnetic fields (PEMFs) are used for treatment of long‐bone fracture and lumbar and cervical spine fusion surgery. Clinical studies examining the effects of PEMF on soft tissue healing show promising results. Therefore, we investigated the role of PEMF on rotator cuff healing using a rat rotator cuff repair model. We hypothesized that PEMF exposure following rotator cuff repair would improve tendon mechanical properties, tissue morphology, and alter in vivo joint function. Seventy adult male Sprague–Dawley rats were assigned to three groups: bilateral repair with PEMF ( n  = 30), bilateral repair followed by cage activity ( n  = 30), and uninjured control with cage activity ( n  = 10). Rats in the surgical groups were sacrificed at 4, 8, and 16 weeks. Control group was sacrificed at 8 weeks. Passive joint mechanics and gait analysis were assessed over time. Biomechanical analysis and μCT was performed on left shoulders; histological analysis on right shoulders. Results indicate no differences in passive joint mechanics and ambulation. At 4 weeks the PEMF group had decreased cross‐sectional area and increased modulus and maximum stress. At 8 weeks the PEMF group had increased modulus and more rounded cells in the midsubstance. At 16 weeks the PEMF group had improved bone quality. Therefore, results indicate that PEMF improves early tendon healing and does not alter joint function in a rat rotator cuff repair model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:902–909, 2017.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here