z-logo
Premium
Genipin crosslinking of cartilage enhances resistance to biochemical degradation and mechanical wear
Author(s) -
McGann Megan E.,
Bonitsky Craig M.,
Jackson Mariah L.,
Ovaert Timothy C.,
Trippel Stephen B.,
Wagner Diane R.
Publication year - 2015
Publication title -
journal of orthopaedic research®
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.22939
Subject(s) - genipin , materials science , cartilage , chondrocyte , collagenase , biomedical engineering , articular cartilage , biocompatibility , degradation (telecommunications) , chemistry , osteoarthritis , chitosan , medicine , anatomy , biochemistry , metallurgy , pathology , telecommunications , alternative medicine , computer science , enzyme
Collagen crosslinking enhances many beneficial properties of articular cartilage, including resistance to chemical degradation and mechanical wear, but many crosslinking agents are cytotoxic. The purpose of this study was to evaluate the effectiveness of genipin, a crosslinking agent with favorable biocompatibility and cytotoxicity, as a potential treatment to prevent the degradation and wear of articular cartilage. First, the impact of genipin concentration and treatment duration on the viscoelastic properties of bovine articular cartilage was quantified. Next, two short‐term (15 min) genipin crosslinking treatments were chosen, and the change in collagenase digestion, cartilage wear, and the friction coefficient of the tissue with these treatments was measured. Finally, chondrocyte viability after exposure to these genipin treatments was assessed. Genipin treatment increased the stiffness of healthy, intact cartilage in a dose‐dependent manner. The 15‐min crosslinking treatments improved cartilage's resistance to both chemical degradation, particularly at the articular surface, and to damage due to mechanical wear. These enhancements were achieved without sacrificing the low coefficient of friction of the tissue and at a genipin dose that preserved chondrocyte viability. The results of this study suggest that collagen crosslinking via genipin may be a promising preventative treatment to slow the degradation of cartilage. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1571–1579, 2015.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here