Premium
Effects of trypsinization and mineralization on intrasynovial tendon allograft healing to bone
Author(s) -
Qu Jin,
van Alphen Nick A.,
Thoreson Andrew R.,
Chen Qingshan,
An KaiNan,
Amadio Peter C.,
Schmid Thomas M.,
Zhao Chunfeng
Publication year - 2015
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.22779
Subject(s) - trypsinization , tendon , dentistry , medicine , anatomy , chemistry , trypsin , biochemistry , enzyme
The purpose of the current study was to develop a novel technology to enhance tendon‐to‐bone interface healing by trypsinizing and mineralizing (TM) an intrasynovial tendon allograft in a rabbit bone tunnel model. Eight rabbit flexor digitorum profundus (FDP) tendons were used to optimize the trypsinization process. An additional 24 FDP tendons were stratified into control and TM groups; in each group, 4 tendons were used for in vitro evaluation of TM and 8 were transplanted into proximal tibial bone tunnels in rabbits. The samples were evaluated histologically and with mechanical testing at postoperative week 8. Maximum failure strength and linear stiffness were not significantly different between the control and TM tendons. A thin fibrous band of scar tissue formed at the graft‐to‐bone interface in the control group. However, only the TM group showed obvious new bone formation inside the tendon graft and a visible fibrocartilage layer at the bone tunnel entrance. This study is the first to explore effects of TM on the intrasynovial allograft healing to a bone tunnel. TM showed beneficial effects on chondrogenesis, osteogenesis, and integration of the intrasynovial tendon graft, but mechanical strength was the same as the control tendons in this short‐term in vivo study. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:468–474, 2015.