z-logo
Premium
A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults
Author(s) -
Haight Derek J.,
Lerner Zachary F.,
Board Wayne J.,
Browning Raymond C.
Publication year - 2014
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.22497
Subject(s) - biomechanics , treadmill , kinematics , medicine , physical medicine and rehabilitation , physical therapy , ground reaction force , anatomy , physics , classical mechanics
We determined if slow, uphill walking (0.75 m/s, 6°) reduced tibiofemoral (TF) loading compared to faster, level walking (1.50 m/s) in obese and nonobese adults. We collected kinematic, kinetic, and electromyographic data as 9 moderately obese and 10 nonobese participants walked on a dual‐belt instrumented treadmill. We used OpenSim to scale a musculoskeletal model and calculate joint kinematics, kinetics, muscle forces, and TF forces. Compressive TF forces were greater in the obese adults during both speed/grade combinations. During level walking, obese participants walked with a straighter leg than nonobese participants, resulting in early stance vasti muscle forces that were similar in the obese and nonobese participants. Early stance peak compressive TF forces were reduced by 23% in obese (2,352 to 1,811 N) and 35% in nonobese (1,994 to 1,303 N) individuals during slow, uphill walking compared to brisk level walking. Late stance peak TF forces were similar across speeds/grades, but were greater in obese (∼2,900 N) compared to nonobese (∼1,700 N) individuals. Smaller early stance TF loads and loading rates suggest that slow, uphill walking may be appropriate exercise for obese individuals at risk for musculoskeletal pathology or pain. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:324–330, 2014.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here