Premium
Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro
Author(s) -
CoraçaHuber Débora C.,
Fille Manfred,
Hausdorfer Johann,
Putzer David,
Nogler Michael
Publication year - 2014
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.22463
Subject(s) - biofilm , staphylococcus aureus , bioactive glass , chemistry , in vitro , food science , microbiology and biotechnology , bacteria , materials science , composite material , biology , biochemistry , genetics
We evaluated the effectiveness of different sizes of bioactive glass S53P4 against Staphylococcus aureus biofilms grown on metal discs in vitro. S. aureus biofilms were cultivated on titanium discs. BAG‐S53P4 (0.5–0.8 mm and <45 µm) were placed in contact with the discs containing biofilms. Glass beads (0.5 mm) were used as a control. After each interval, the pH from each sample was measured. Colony forming units were counted for the biofilm recovery verification. In parallel, we tested the activity of bioactive glass against S. aureus planktonic cells. We found that BAG‐S53P4 can suppress S. aureus biofilm formation on titanium discs in vitro. The suppression rate of biofilm cells by BAG‐S53P4 <45 µm was significantly higher than by BAG‐S53P4 0.5–0.8 mm. BAG‐S53P4 has a clear growth‐inhibitory effect on S. aureus biofilms. BAG‐S53P4 <45 µm is more efficient against biofilm growth in vitro comparing with BAG‐S53P4 0.5–0.8 mm. Bioactive glass S53P4 has potential to be used as bone substitute for the resolution of infection complications in joint replacement surgeries and treatment of chronic osteomyelitis. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 32:175–177, 2014.