z-logo
Premium
Kinetic and kinematic changes with the use of valgus knee brace and lateral wedge insoles in patients with medial knee osteoarthritis
Author(s) -
Fantini Pagani Cynthia H.,
Hinrichs Maren,
Brüggemann GertPeter
Publication year - 2012
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.22032
Subject(s) - valgus , brace , osteoarthritis , medicine , orthodontics , kinematics , knee joint , anatomy , surgery , engineering , structural engineering , physics , alternative medicine , pathology , classical mechanics
The effect of a valgus knee brace and a lateral wedged insole on knee and ankle kinematics and kinetics was evaluated in ten patients with medial knee osteoarthritis (OA). The knee orthosis was tested in two valgus adjustments (4° and 8°), and the laterally wedged insole was fabricated with an inclination of 4°. A motion capture system and force platforms were used for data collection and joint moments were calculated using inverse dynamics. The valgus moment applied by the orthosis was also measured using a strain gauge implemented in the orthosis' rotational axis. For the second peak knee adduction moment, decreases of 18%, 21%, and 7% were observed between baseline and test conditions for the orthosis in 4° valgus, in 8° valgus, and insole, respectively. Similar decreases were observed for knee lever arm in the frontal plane. Knee adduction angular impulse decreased 14%, 18%, and 7% from baseline to conditions for the orthosis in 4° valgus, in 8° valgus, and insole, respectively. Knee angle in the frontal plane reached a more valgus position during gait using the valgus knee brace. The valgus moment applied by the orthosis with 8° valgus adjustment was 30% higher than with 4° valgus adjustment. The valgus knee orthosis was more effective than the laterally wedged insole in reducing knee adduction moment in patients with medial knee OA. © 2011 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1125–1132, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom