z-logo
Premium
Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing
Author(s) -
Oh Youkeun K.,
Kreinbrink Jennifer L.,
Wojtys Edward M.,
AshtonMiller James A.
Publication year - 2012
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.21572
Subject(s) - anterior cruciate ligament , tibia , cadaveric spasm , strain (injury) , biomechanics , hamstring , torque , orthodontics , medicine , anatomy , surgery , physics , thermodynamics
Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle‐tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM‐ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed‐rank test was used to test the null hypotheses with p  < 0.05 considered significant. The mean (±SD) peak AM‐ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM‐ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM‐ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively ( p  = 0.023, p  = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM‐ACL than does a corresponding external tibial torque. © 2011 Orthopaedic Research Society. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:528–534, 2012

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here