Premium
PI3Kγ deletion reduces variability in the in vivo osteolytic response induced by orthopaedic wear particles
Author(s) -
Greenfield Edward M.,
Tatro Joscelyn M.,
Smith Matthew V.,
Schnaser Erik A.,
Wu Dianqing
Publication year - 2011
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.21440
Subject(s) - osteolysis , pi3k/akt/mtor pathway , in vivo , protein kinase b , inflammation , signal transduction , in vitro , cancer research , chemistry , microbiology and biotechnology , medicine , immunology , biology , biochemistry , surgery , genetics
Orthopedic wear particles activate a number of intracellular signaling pathways associated with inflammation in macrophages and we have previously shown that the phosphoinositol‐3‐kinase (PI3K)/Akt pathway is one of the signal transduction pathways that mediates the in vitro activation of macrophages by orthopedic wear particles. Since PI3Kγ is primarily responsible for PI3K activity during inflammation, we hypothesized that PI3Kγ mediates particle‐induced osteolysis in vivo. Our results do not strongly support the hypothesis that PI3Kγ regulates the overall amount of particle‐induced osteolysis in the murine calvarial model. However, our results strongly support the conclusion that variability in the amount of particle‐induced osteolysis between individual mice is reduced in the PI3Kγ −/− mice. These results suggest that PI3Kγ contributes to osteolysis to different degrees in individual mice and that the mice, and patients, that are most susceptible to osteolysis may be so, in part, due to an increased contribution from PI3Kγ. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:1649–1653, 2011