z-logo
Premium
Combined effects of TNF‐α, IL‐1β, and HIF‐1α on MMP‐2 production in ACL fibroblasts under mechanical stretch: An in vitro study
Author(s) -
Wang Yequan,
Tang Zhenyu,
Xue Ruyue,
Singh Gurinder K.,
Shi Kunning,
Lv Yonggang,
Yang Li
Publication year - 2011
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.21349
Subject(s) - anterior cruciate ligament , matrix metalloproteinase , tumor necrosis factor alpha , inflammation , hypoxia (environmental) , acl injury , medicine , chemistry , surgery , organic chemistry , oxygen
The dynamics between inflammatory factors, mechanical stress, and healing factors, in an intra‐articular joint, are very complex after injury. Injury to intra‐articular tissue [anterior cruciate ligament (ACL), synovium] results in hypoxia, accumulation of various pro‐inflammatory factors, cytokines, and metalloproteases. Although the presence of increased amounts of matrix‐metalloproteinases (MMP) in the joint fluid after knee injury is considered the key factor for ACL poor healing ability; however, the exact role of collective participants of the joint fluid on MMP‐2 activity and production has not been fully studied yet. To investigate the combined effects of mechanical injury, inflammation and hypoxia induced factor‐1α (HIF‐1α) on induction of MMP‐2; we mimicked the microenvironment of joint cavity after ACL injury. The results show that TNF‐α and IL‐1β elevate the activity of MMP‐2 in a dose‐ and time‐dependent manner. In addition, mechanical stretch further enhances the MMP‐2 protein levels with TNF‐α, IL‐1β, and their mixture. CoCl 2 ‐induced HIF‐1α (100 and 500 µM) also increases the levels and activity of MMP‐2. Mechanical stretch has a strong additional effect on MMP‐2 production with HIF‐1α. Our results conclude that mechanical injury, HIF‐1α and inflammatory factors collectively induce increased MMP‐2 production in ACL fibroblasts, which was inhibited by NF‐κB pathway inhibitor (Bay‐11‐7082). © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1008–1014, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here