Premium
An internal locking plate to study intramembranous bone healing in a mouse femur fracture model
Author(s) -
Histing Tina,
Garcia Patric,
Matthys Romano,
Leidinger Markus,
Holstein Joerg H.,
Kristen Alexander,
Pohlemann Tim,
Menger Michael D.
Publication year - 2010
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.21008
Subject(s) - intramembranous ossification , endochondral ossification , intramedullary rod , bone healing , femur , ossification , medicine , anatomy , fixation (population genetics) , cartilage , internal fixation , surgery , population , environmental health
In most murine fracture models, the femur is stabilized by an intramedullary implant and heals predominantly through endochondral ossification. The aim of the present study was to establish a mouse model in which fractures heal intramembranously. Femur fractures of 16 SKH‐mice were stabilized by an internal locking plate. Femur fractures of another 16 animals were stabilized by an intramedullary screw. Bone repair was analyzed by radiographic, biomechanical, and histological methods. At 2 weeks, histological analysis showed a significantly smaller callus diameter and callus area after locking plate fixation. Cartilage formation within the callus could only be observed after screw fixation, but not after fracture stabilization with the locking plate. Radiological and biomechanical analysis after 2 and 5 weeks showed a significantly improved healing and a higher bending stiffness of fractures stabilized by the locking plate. Fractures stabilized by the locking plate healed exclusively by intramembranous ossification, which is most probably a result of the anatomical reduction and stable fixation. The fractures that healed by intramembranous ossification showed an increased stiffness compared to fractures that healed by endochondral ossification. This model may be used to study molecular mechanisms of intramembranous bone healing. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:397–402, 2010