Premium
A rat model for evaluating physiological responses to femoral shaft fracture reduction using a surgical robot
Author(s) -
Oszwald Markus,
Westphal Ralf,
O'Loughlin Padhraig F.,
Kendoff Daniel,
Hufner Tobias,
Wahl Friedrich,
Krettek Christian,
Gosling Thomas
Publication year - 2008
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.20698
Subject(s) - reduction (mathematics) , femur , fracture reduction , fixation (population genetics) , osteotomy , soft tissue , femoral fracture , biomedical engineering , medicine , orthodontics , surgery , internal fixation , mathematics , population , geometry , environmental health
The first step in treatment of displaced femoral shaft fractures is adequate reduction of the fracture fragments. Manually performed, reduction can be challenging, and is frequently associated with soft tissue damage, especially when repeated reduction attempts are made. The magnitude of local and systemic inflammatory responses caused by prolonged and repeated reduction maneuvers has not been fully established. We devised an operative technique utilizing a robotic reduction device for use in a rat. A femoral fracture was simulated by means of an osteotomy. The robot enabled reproduction of both manual and guided precision reductions, performed in a single path movement. An external fixator was designed specifically to manipulate the rat femur and also for fixation of the osteotomy region. First, reduction accuracy was assessed in eight femurs, then the quality of fixator placement and reduction accuracy was analyzed in 22 femurs. In the first case, 100% of the femurs were accurately reduced. In the second case, 91% had successful stable fixation and an accurate reduction was achieved in 86% of the specimens. We demonstrated the feasibility of a model of robot‐assisted fracture reduction that could be used to analyze the effects of reduction on the surrounding soft tissue via biochemical and histopathological means. A future aspect will be to evaluate whether the robot confers an advantage in fracture reduction versus the conventional technique, which would have significant implications for the use of robotic devices in orthopaedic surgery. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res