Premium
Joint immobilization reduces the expression of sensory neuropeptide receptors and impairs healing after tendon rupture in a rat model
Author(s) -
Bring Daniel K.I.,
Reno Carol,
Renstrom Per,
Salo Paul,
Hart David A.,
Ackermann Paul W.
Publication year - 2009
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.20657
Subject(s) - neuropeptide , sensory system , tendon , receptor , joint (building) , neuroscience , medicine , endocrinology , anatomy , biology , structural engineering , engineering
Healing after mobilization versus immobilization was assessed in a model of rat Achilles tendon rupture, by RT‐PCR at 8 and 17 days and by histological analyses at 14 and 28 days postrupture. The expression of mRNA for extracellular matrix (ECM) molecules (collagen type I and type III, versican, decorin, and biglycan), and the subjective histological maturation of the healing area were analyzed. Effects of immobilization on healing were related to changes in the peripheral expression of substance P (NK 1 )‐ and calcitonin gene‐related peptide (CRLR and RAMP‐1)‐ receptors. At 8 days postinjury, mRNA levels for ECM molecules were equal in both groups. However, by day 17, the ECM mRNA expression in the mobilized group had increased up to ∼14× that of the immobilized group, which were comparable to intact tendon values. Histological analysis confirmed a higher regenerating activity in the mobilized group, with an increased amount of blood vessels, fibroblasts, and new collagen. The expression of sensory neuropeptide receptors in the mobilized group exhibited a significant increase from 8 to 17 days postinjury similar to the increased ECM mRNA expression, whereas the immobilized group at 17 days exhibited levels comparable to the intact tendon values. Therefore, immobilization postrupture appears to hamper tendon healing, a process which may prove to be directly linked to a downregulated peripheral sensitivity to sensory neuropeptide stimulation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:274–280, 2009