Premium
Quantitative analysis of gene expression in human articular chondrocytes assigned for autologous implantation
Author(s) -
Barlič Ariana,
Drobnič Matej,
Maličev Elvira,
KregarVelikonja Nevenka
Publication year - 2008
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.20559
Subject(s) - aggrecan , agarose , self healing hydrogels , monolayer , chondrocyte , in vitro , autologous chondrocyte implantation , chemistry , microbiology and biotechnology , biomedical engineering , tissue engineering , andrology , articular cartilage , pathology , medicine , biology , biochemistry , osteoarthritis , polymer chemistry , alternative medicine
Autologous chondrocyte implantation (ACI) relies on the implantation of in vitro expanded cells. The aim was to study the dedifferentiation of human articular chondrocytes under different cultivating conditions [days 0–10 in the primary culture (P0); passages in a monolayer from P0 to P3; monolayer vs. alginate and monolayer vs. alginate/agarose hydrogels] using real‐time PCR analysis. The relative gene expressions for collagen type I and II, aggrecan and versican were quantified and the corresponding differentiation indexes (Col2/Col1, Agr/Ver) were calculated. The values of both differentiation indexes decreased exponentially with time in the P0 monolayer culture, and continued with a significant decrease over the subsequent monolayer passages. On the contrary, the chondrocytes seeded in either of the hydrogels significantly increased the indexes compared to their parallel monolayer cultures. These results indicate that alginate and alginate/agarose hydrogels offer an appropriate environment for human articular chondrocytes to redifferentiate after being expanded in vitro. Therefore the three‐dimensional (3D) hydrogel chondrocyte cultures present not only surgical, but also biological advantage over the classic suspension–periosteum chondrocyte implantation. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:847–853, 2008