z-logo
Premium
Forces involved in lower limb lengthening: An in vivo biomechanical study
Author(s) -
Lauterburg Martin Th.,
Exner G. Ulrich,
Jacob Hilaire A.C.
Publication year - 2006
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.20217
Subject(s) - biomechanics , lower limb , physical medicine and rehabilitation , anatomy , medicine , surgery
Despite improvements in surgical techniques for limb‐lengthening procedures, the complication rate remains high. Bone fixators must cope with the forces involved during treatment, providing sufficient strength to maintain integrity of the limb in the course of lengthening, while permitting some “micromotion” across the bone gap that could enhance healing during the final phase of bone consolidation. This study reports on the forces generated during limb lengthening in the distraction and consolidation phases. Forces were measured on 19 patients between 6 and 22 years of age with 10 femoral and 11 tibial lengthenings of 1 mm/day by means of a monotube external fixator, fitted diaphysially, and modified to measure tension and weight‐bearing forces. Peak force measured during the lengthening period amounted to about 14 N/kg of body mass. Generally, distraction forces leveled off at between 8 and 10 N/kg of body mass. During the consolidation period, the average force carried by the fixator dropped from 55% initially to about 10% of the force transmitted to the ground, consistent with increased load carrying capacity of the bone as healing progressed. Studying the forces involved in limb lengthening is important to gain knowledge of the forces required to overcome the resistance offered by the tissues that bridge the osteotomy site, to understand the biology of distraction osteogenesis and histiogenesis across the regenerate over time, and to provide scientific guidelines for frame removal. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here