z-logo
Premium
The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical‐size canine segmental femoral diaphyseal defect
Author(s) -
Lindsey Ronald W.,
Gugala Zbigniew,
Milne Edward,
Sun Michael,
Gan Francis H.,
Latta Loren L.
Publication year - 2006
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.20154
Subject(s) - femur , radiography , medicine , cancellous bone , intramedullary rod , cage , nuclear medicine , materials science , biomedical engineering , anatomy , radiology , surgery , mathematics , combinatorics
The authors developed a novel technique for the reconstruction of large segmental long bone defects using a cylindrical titanium mesh cage (CTMC). Although the initial clinical reports have been favorable, the CTMC technique has yet to be validated in a clinically relevant large animal model, which is the purpose of this study. Under general anesthesia, a unilateral, 3‐cm mid‐diaphyseal segmental defect was created in the femur of an adult canine. The defect reconstruction technique consisted of a CTMC that was packed and surrounded with a standard volume of morselized canine cancellous allograft and canine demineralized bone matrix. The limb was stabilized with a reamed titanium intramedullary nail. Animals were distributed into four experimental groups: in Groups A, B, and C (six dogs each), defects were CTMC reconstructed, and the animals euthanized at 6, 12, and 18 weeks, respectively; in Group D (three dogs), the same defect reconstruction was performed but without a CTMC, and the animals were euthanized at 18 weeks. The femurs were harvested and analyzed by gross inspection, plain radiography, computed tomography (CT), and single photon emission computed tomography (SPECT). The femurs were mechanically tested in axial torsion to failure; two randomly selected defect femurs from each group were analyzed histologically. Groups A, B, and C specimens gross inspection, plain radiography, and CT, demonstrated bony restoration of the defect, and SPECT confirmed sustained biological activity throughout the CTMC. Compared to the contralateral femur, the 6‐, 12‐, and 18‐week mean defect torsional stiffness was 44.4, 45.7, and 72.5%, respectively; the mean torsional strength was 51.0, 73.6, and 83.4%, respectively. Histology documented new bone formation spanning the defect. Conversely, Group D specimens (without CTMC) demonstrated no meaningful bone formation, biologic activity, or mechanical integrity at 18 weeks. The CTMC technique facilitated healing of a canine femur segmental defect model, while the same technique without a cage did not. The CTMC technique may be a viable alternative for the treatment of segmental long bone defects. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 24:1438–1453, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here