z-logo
Premium
Dependence of trabecular damage on mechanical strain
Author(s) -
Wachtel Edward F.,
Keaveny Tony M.
Publication year - 1997
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.1100150522
Subject(s) - trabecular bone , strain (injury) , tibia , materials science , compression (physics) , anatomy , biomedical engineering , composite material , medicine , osteoporosis , pathology
Abstract Trabecular damage may play a role in hip fracture, bone remodeling, and prosthesis loosening. We hypothesized that when trabecular bone is loaded beyond its elastic range, both the type and the amount of damage depend on the applied strains. Thirty specimens of trabecular bone from the bovine tibia underwent compression tests to one of three levels of strain (0.4,1.0, and 2.5%) (n = 10 per group). The 0.4% level was a mechanically nondestructive control group that accounted for any systematic errors. Optical microscopy at magnifications as high as × 200 was then used to quantify the trabecular damage for each group. The amount of damage in the yield group (1.0% strain) did not differ from that in the control group (p = 0.66), whereas damage in the post‐ultimate strain group (2.5% strain) increased more than 3‐fold (p < 0.0008). Four types of damage were observed: transverse cracks, shear bands, parallel cracks, and complete fractures, of which the first two were dominant. These findings therefore indicate that damage occurs within trabeculae at yield. By comparison with our previous work, it can also be concluded that substantial modulus reductions in trabecular bone (as much as 60%) are caused by damage primarily within trabeculae. The ability to detect such damage clinically may improve in vivo estimates of whole‐bone strength by identifying regions of densito metrically normal but mechanically compromised trabecular bone.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here