z-logo
Premium
Frozen storage increases the ultimate compressive load of porcine vertebrae
Author(s) -
Callaghan Jack P.,
McGill Stuart M.
Publication year - 1995
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.1100130522
Subject(s) - displacement (psychology) , materials science , stiffness , ultimate tensile strength , compressive strength , peak load , universal testing machine , composite material , psychology , nuclear engineering , engineering , psychotherapist
The use of freezing as a method of storage is commonplace in mechanical testing of biological tissues. The effects of freezing on tissues that comprise spinal segments have been examined separately, but little work has been done on intact specimens. We examined the effect of freezing on the structural properties of porcine cervical spines. The intact cervical spines of seven pigs (a total of 14 specimens–seven of C2–C4 and seven of C5–C7) were stored frozen (−20°C) for 1 month. The ultimate compressive load, displacement, stiffness, and energy absorbed were obtained using a monotonic compressive load applied at 3,000 N/sec. The structural properties were compared with those of another 14 porcine cervical specimens (control group, matched for age and weight) that were tested in a fresh state. The frozen storage of the vertebral specimens significantly increased the ultimate compressive load (24%) and energy absorbed to failure (33%). The stiffness and displacement at failure were not affected. We concluded that the use of freezing as a storage medium should be of concern when the resulting measures are used to quantify the ultimate compressive load of the spinal motion segments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here