z-logo
Premium
Strain in the anteromedial bundle of the anterior cruciate ligament under combination loading
Author(s) -
Berns Gregory S.,
Hull M. L.,
Patterson Hugh A.
Publication year - 1992
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.1100100203
Subject(s) - anterior cruciate ligament , valgus , strain (injury) , strain gauge , torque , materials science , anatomy , knee flexion , biomechanics , orthodontics , medicine , composite material , physics , thermodynamics
Strain within the anteromedial bundle (AMB) of the anterior cruciate ligament (ACL) was measured in 13 human knee specimens in order to determine the combination of external loads most likely to cause injury. Using a load application system that allowed 5 df with the flexion angle being fixed, pure loads of anterior/posterior force, medial/lateral force, varus/valgus torque, and internal/external axial torque were applied at three flexion angles: 0°, 15°, 30°. Combined loads were applied in pairs at two flexion angles: 0° and 30°. Liquid mercury strain gauges were used to measure strain in the ACL. Anterior tibial force was the primary determinant of strain in the anteromedial bundle. This strain was significantly larger at 30° flexion than at 0°. The strain sensitivity of the AMB to medial force was approximately one‐half that to pure anterior force. The effect of anterior and medial forces was additive when applied in combination. Neither pure axial torque nor pure varus/valgus torque was observed to strain significantly the AMB at any of the flexion angles investigated. However, valgus torque in combination with anterior force resulted in a significantly larger strain than pure anterior force. Internal axial torque in combination with anterior force also resulted in a larger strain than pure anterior force.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here