Premium
Estimation of mechanical properties of cortical bone by computed tomography
Author(s) -
Snyder Susan M.,
Schneider Erich
Publication year - 1991
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1002/jor.1100090315
Subject(s) - cortical bone , attenuation , imaging phantom , quantitative computed tomography , hounsfield scale , materials science , linear regression , calibration , biomedical engineering , scanner , computed tomography , range (aeronautics) , modulus , tomography , attenuation coefficient , bone density , linear correlation , nuclear medicine , mathematics , composite material , physics , optics , statistics , osteoporosis , medicine , radiology , anatomy , endocrinology
It is difficult to assess from conventional x‐rays the amount of loading that a bone can tolerate. The question therefore was asked whether the mechanical properties of cortical bone could be estimated by using a computed tomography (CT) system typically employed in the clinical setting. In vitro cross sectional diaphyseal scans of adult human tibiae were made using a GE 9800 scanner and linear attenuation coefficients determined in several regions of the central cross sections. Samples from the mid‐diaphyses of these tibiae were harvested, tested in three‐point bending to failure, and mechanical properties as well as density and ash fraction determined. The respective relationships between CT measurements, mechanical properties and physical properties were calculated using regression analysis. In addition a solid calibration phantom (tricalciumphosphate) was scanned to evaluate the variability of CT measurements. The physical parameters measured in this study were found to be comparable with data from other authors but correlations coefficients with CT data: r = 0.55 (Young's modulus), r = 0.50 (strength), r = 0.65 (apparent density) and r = 0.46 (ash fraction). The correlation coefficients of these regressions for both linear and power fits were not significantly different. A high linear correlation ( r = 0.99) was found between the chamber densities and the measured attenuation coefficients, but accuracy varied between 2 and 6%. The small range of specimen mechanical properties as well as the limitations inherent with the methods employed may explain these results. We conclude that clinical equipment as used in this study is not sufficient to accurately estimate the mechanical properties of cortical bone.