z-logo
Premium
Interannual variation in summer extreme precipitation over Southwestern China and the possible associated mechanisms
Author(s) -
Xu Huiwen,
Chen Huopo,
Wang Huijun
Publication year - 2021
Publication title -
international journal of climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.58
H-Index - 166
eISSN - 1097-0088
pISSN - 0899-8418
DOI - 10.1002/joc.7027
Subject(s) - teleconnection , climatology , anomaly (physics) , precipitation , environmental science , siberian high , sea surface temperature , arctic , rossby wave , arctic ice pack , oceanography , geology , atmospheric sciences , china , sea ice , el niño southern oscillation , east asia , geography , physics , archaeology , meteorology , condensed matter physics
Abstract This study explores the spatial–temporal variations in summer extreme precipitation over Southwestern China (SWC). The frequency of summer extreme precipitation (FEP) has exhibited strong interannual variation with slightly strengthened intensity in recent decades. The associated anomalous water vapour transport mainly originates from northern China, the Indian Ocean, the South China Sea and the Northwest Pacific. The high FEP over SWC is generally associated with the strong Eurasian (EU) pattern and the pattern that is similar to Pacific‐Japan (PJ) teleconnection. The results further indicate that the anomalous May Arctic sea ice concentration and the sea surface temperature anomaly over the Northwest Pacific play an important role in the variation of FEP over SWC. On the one hand, the reduction in Arctic sea ice concentration intensifies Rossby wave propagation and then stimulates the formation of EU teleconnection pattern. The associated anomalous northeasterly integrated water vapour transport and high‐level westerly anomalies can result in strong interannual changes in FEP over SWC. On the other hand, the sea surface temperature anomaly over the Northwest Pacific can induce an anomalous PJ‐like pattern, and the associated anomalous southwesterly water vapour transport also exerts an impact on the change in FEP over SWC.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here