Premium
High‐resolution regional climate model projections of future tropical cyclone activity in the Philippines
Author(s) -
Gallo Florian,
Daron Joseph,
Macadam Ian,
Cinco Thelma,
Villafuerte Marcelino,
Buonomo Erasmo,
Tucker Simon,
HeinGriggs David,
Jones Richard G.
Publication year - 2018
Publication title -
international journal of climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.58
H-Index - 166
eISSN - 1097-0088
pISSN - 0899-8418
DOI - 10.1002/joc.5870
Subject(s) - tropical cyclone , climatology , african easterly jet , tropical cyclone rainfall forecasting , environmental science , climate model , climate change , tropical cyclone scales , cyclone (programming language) , tropical wave , geology , computer science , oceanography , field programmable gate array , computer hardware
The Philippines is one of the most exposed countries in the world to tropical cyclones. In order to provide information to help the country build resilience and plan for a future under a warmer climate, we build on previous research to investigate implications of future climate change on tropical cyclone activity in the Philippines. Experiments were conducted using three regional climate models with horizontal resolutions of approximately 12 km (HadGEM3‐RA) and 25 km (HadRM3P and RegCM4). The simulations are driven by boundary data from a subset of global climate model simulations from the CMIP5 ensemble. Here we present the experimental design, the methodology for selecting CMIP5 models, the results of the model validation, and future projections of changes to tropical cyclone frequency and intensity by the mid‐21st century. The models used are shown to represent the key climatological features of tropical cyclones across the domain, including the seasonality and general distribution of intensities, but issues remain in resolving very intense tropical cyclones and simulating realistic trajectories across their life‐cycles. Acknowledging model inadequacies and uncertainties associated with future climate model projections, the results show a range of plausible changes with a tendency for fewer but slightly more intense tropical cyclones. These results are consistent with the basin‐wide results reported in the IPCC AR5 and provide clear evidence that the findings from these previous studies are applicable in the Philippines region.