Premium
Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050
Author(s) -
Terink Wilco,
Immerzeel Walter Willem,
Droogers Peter
Publication year - 2013
Publication title -
international journal of climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.58
H-Index - 166
eISSN - 1097-0088
pISSN - 0899-8418
DOI - 10.1002/joc.3650
Subject(s) - precipitation , evapotranspiration , climate change , climatology , environmental science , middle east , water resources , climate model , geography , meteorology , geology , ecology , archaeology , biology , oceanography
The Middle East and North Africa ( MENA ) region can be considered as the most water‐scarce region of the world. The Intergovernmental Panel on Climate Change projects strong changes in climate across MENA , further exacerbating pressure on available water resources. The objective of this study is to undertake a climate change assessment for 22 MENA countries in order to quantify the problems these countries may encounter up to 2050. To evaluate climate change in MENA , nine global circulation models representing two future periods (2020–2030 and 2040–2050) were statistically downscaled and compared with a current climate, defined as the period 2000–2009. Besides precipitation only this study also focuses on change in water demand by vegetation reference evapotranspiration ( ETref ). It was found that for both future periods the annual precipitation sum will decrease for the majority of countries, with decreases of 15–20% for the latter period. For some countries, e.g. Djibouti and Yemen, an increase in annual precipitation of 15–20% was found. The annual ETref shows an increase for all countries for both future periods, with the strongest increases for the latter period. For the extreme situation, it was found that the minimum monthly and annual precipitation sum does not become smaller in the future climate. It in fact increases. In contrast, the maximum monthly and annual ETref increases for all countries. This indicates that projected changes in demand are likely to have a more adverse effect than changes in supply. Spatial analysis showed that the largest precipitation decreases are to be found in southern Egypt, Morocco, central and coastal Algeria, Tunisia, central Libya, Syria, and central and eastern Iran. A case study for Morocco revealed that the potential water deficit, which is already apparent for the current climate, becomes even larger for the future climate.