z-logo
Premium
Seasonal march and its spatial difference of rainfall in the Philippines
Author(s) -
Akasaka I.,
Morishima W.,
Mikami T.
Publication year - 2007
Publication title -
international journal of climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.58
H-Index - 166
eISSN - 1097-0088
pISSN - 0899-8418
DOI - 10.1002/joc.1428
Subject(s) - climatology , monsoon , empirical orthogonal functions , orographic lift , trough (economics) , wet season , environmental science , subtropical ridge , geography , subtropics , tropical cyclone rainfall forecasting , geology , precipitation , meteorology , cyclone (programming language) , cartography , field programmable gate array , fishery , biology , computer science , computer hardware , economics , macroeconomics
On the basis of the pentad rainfall data averaged from 1961 to 2000, the seasonal march of rainfall in the Philippines is analyzed in this study. The relation to the atmospheric circulation at the 850 hPa level is also discussed. To investigate the temporal and spatial features of rainfall, the Empirical orthogonal function (EOF) analysis was applied to rainfall data. The result showed two dominant modes in the seasonal march of rainfall. The first mode reveals the increase of rainfall amount in the entire Philippines during summer monsoon while the second mode represents the contrast between the west and east coasts in the seasonal march of rainfall. The rainy season starts simultaneously over the entire west coast in the middle of May and withdraws gradually from northern stations around November. And on the east coast, the rainfall amount increases in autumn and winter rather than in summer. These regional differences between west and east coasts are considered to correspond to the seasonal change of Asian summer monsoon and orographic effect. The seasonal march of rainfall in the Philippines is characterized by the sudden change of atmospheric circulation around the Philippines. Particularly, the onset and peak of rainy season on the west coast are influenced by the eastward shift of the subtropical high and the evolution of the monsoon trough with southwesterly, respectively. The increase of rainfall on the east coast is related with the weakened monsoon trough around early September. Copyright © 2006 Royal Meteorological Society

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here