
Mechanoelectrical feedback in pulmonary vein arrhythmogenesis: Clinical challenges and therapeutic opportunities
Author(s) -
Lu YenYu,
Chen YaoChang,
Lin YungKuo,
Chen ShihAnn,
Chen YiJen
Publication year - 2020
Publication title -
journal of arrhythmia
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 21
eISSN - 1883-2148
pISSN - 1880-4276
DOI - 10.1002/joa3.12391
Subject(s) - medicine , pulmonary vein , afterdepolarization , cardiology , atrial fibrillation , neuroscience , electrophysiology , repolarization , biology
Mechanoelectrical feedback is an important factor in the pathophysiology of atrial fibrillation (AF). Ectopic electrical activity originating from pulmonary vein (PV) myocardial sleeves has been found to trigger and maintain paroxysmal AF. Dilated PVs by high stretching force may activate mechanoelectrical feedback, which induces calcium overload and produces afterdepolarization. These results, in turn, increase PV arrhythmogenesis and contribute to initiation of AF. Paracrine factors, effectors of the renin‐angiotensin system, membranous channels, or cytoskeleton of PV myocytes may modulate PV arrhythmogenesis directly through mechanoelectrical feedback or indirectly through endocardial/myocardial cross‐talk. The purpose of this review is to present laboratory and translational relevance of mechanoelectrical feedback in PV arrhythmogenesis. Targeting mechanoelectrical feedback in PV arrhythmogenesis may shed light on potential opportunities and clinical concerns of AF treatment.