Premium
Zonisamide promotes survival of human‐induced pluripotent stem cell‐derived dopaminergic neurons in the striatum of female rats
Author(s) -
Miyawaki Yoshifumi,
Samata Bumpei,
Kikuchi Tetsuhiro,
Nishimura Kaneyasu,
Takahashi Jun
Publication year - 2020
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.24668
Subject(s) - striatum , induced pluripotent stem cell , transplantation , dopaminergic , progenitor cell , zonisamide , biology , embryonic stem cell , stem cell , microbiology and biotechnology , neuroscience , medicine , dopamine , gene , biochemistry , epilepsy , topiramate
The transplantation of dopaminergic (DA) progenitors derived from pluripotent stem cells improves the behavior of Parkinson's disease model animals. However, the survival of DA progenitors is low, and the final yield of DA neurons is only approximately 0.3%–2% the number of transplanted cells. Zonisamide (ZNS) increases the number of survived DA neurons upon the transplantation of mouse‐induced pluripotent stem (iPS) cell‐derived DA progenitors in the rat striatum. In this study, we induced DA progenitors from human iPS cells and transplanted them into the striatum of female rats with daily administration of ZNS. The number of survived DA neurons was evaluated 1 and 4 months after transplantation by immunohistochemistry, which revealed that the number of survived DA neurons was significantly increased with the administration of ZNS. To assess the mechanism of action of ZNS, we performed a gene expression analysis to compare the gene expression profiles in striatum treated with or without ZNS. The analysis revealed that the expression of SLIT‐and NTRK‐like protein 6 (SLITRK6) was upregulated in rat striatum treated with ZNS. In conclusion, ZNS promotes the survival of DA neurons after the transplantation of human‐iPS cell‐derived DA progenitors in the rat striatum. SLITRK6 is suggested to be involved in this supportive effect of ZNS by modulating the environment of the host brain.