z-logo
Premium
The placenta‐brain‐axis
Author(s) -
Rosenfeld Cheryl S.
Publication year - 2021
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.24603
Subject(s) - placenta , conceptus , fetus , neuroscience , in utero , pregnancy , biology , dopamine , physiology , bioinformatics , medicine , genetics
All mammalian species depend on the placenta, a transient organ, for exchange of gases, nutrients, and waste between the mother and conceptus. Besides serving as a conduit for such exchanges, the placenta produces hormones and other factors that influence maternal physiology and fetal development. To meet all of these adaptations, the placenta has evolved to become the most structurally diverse organ within all mammalian taxa. However, commonalities exist as to how placental responses promote survival against in utero threats and can alter the trajectory of fetal development, in particular the brain. Increasing evidence suggests that reactions of the  placenta to various in utero stressors may lead to long‐standing health outcomes, otherwise considered developmental origin of health and disease effects. Besides transferring nutrients and gases, the placenta produces neurotransmitters, including serotonin, dopamine, norepinephrine/epinephrine, that may circulate and influence brain development. Neurobehavioral disorders, such as autism spectrum disorders, likely trace their origins back to placental disturbances. This intimate relationship between the placenta and brain has led to coinage of the term, the placenta‐brain‐axis. This axis will be the focus herein, including how conceptus sex might influence it, and technologies employed to parse out the effects of placental‐specific transcript expression changes on later neurobehavioral disorders. Ultimately, the placenta might provide a historical record of in utero threats the fetus confronted and a roadmap to understand how placenta responses to such encounters impacts the placental‐brain‐axis. Improved early diagnostic and preventative approaches may thereby be designed to mitigate such placental disruptions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here