Premium
Physiological aging at striatal synapses
Author(s) -
Walsh John P.,
Akopian Garnik
Publication year - 2019
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.24484
Subject(s) - neuroscience , basal ganglia , synaptic plasticity , metaplasticity , long term potentiation , biology , psychology , striatum , neurotransmission , dopamine , central nervous system , receptor , biochemistry
Mike Levine's body of work guides thinking on how the basal ganglia process information to create coordinated movements and skill learning throughout the life span and in disease. This special issue is a nod to Mike's career and a well‐deserved gesture by the neuroscience community thanking him for the impact he has made on many people's careers and the field of basal ganglia physiology. This paper reviews how aging impacts basal ganglia processing with a focus on single cell and synaptic physiology. This review begins with the work Mike did with his collaborators Nat Buchwald, Chester Hull and Jay Schneider. These early studies paved the way for subsequent studies on changes in synaptic processing that occur with aging in the basal ganglia. The primary focus of this review is aging at corticostriatal synapses. Corticostriatal synapses show reduced expression of both short‐term and long‐term synaptic potentiation. The roles of age‐related changes in calcium homeostasis, vesicle cycling, dopamine modulation, and NMDA receptor function in aging's effect on synaptic plasticity are discussed. The article ends with a review of mitochondrial aging theory as it applies to age‐induced changes in corticostriatal synaptic function.