Premium
Different resuscitation strategies and novel pharmacologic treatment with valproic acid in traumatic brain injury
Author(s) -
Dekker Simone E.,
Nikolian Vahagn C.,
Sillesen Martin,
Bambakidis Ted,
Schober Patrick,
Alam Hasan B.
Publication year - 2018
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.24125
Subject(s) - traumatic brain injury , valproic acid , medicine , histone deacetylase , resuscitation , intensive care medicine , pharmacology , bioinformatics , anesthesia , histone , epilepsy , psychiatry , biology , biochemistry , gene
Traumatic brain injury (TBI) is a leading cause of death in young adults, and effective treatment strategies have the potential to save many lives. TBI results in coagulopathy, endothelial dysfunction, inflammation, cell death, and impaired epigenetic homeostasis, ultimately leading to morbidity and/or mortality. Commonly used resuscitation fluids such as crystalloids or colloids have several disadvantages and might even be harmful when administered in large quantities. There is a need for next‐generation treatment strategies (especially in the prehospital setting) that minimize cellular damage, improve survival, and enhance neurological recovery. Pharmacologic treatment with histone deacetylase inhibitors, such as valproic acid, has shown promising results in animal studies of TBI and may therefore be an excellent example of next‐generation therapy. This review briefly describes traditional resuscitation strategies for TBI combined with hemorrhagic shock and describes preclinical studies on valproic acid as a new pharmacologic agent in the treatment of TBI. It finally discusses limitations and future directions on the use of histone deacetylase inhibitors for the treatment of TBI.