z-logo
Premium
Age‐related synaptic dysfunction in Tg2576 mice starts as a failure in early long‐term potentiation which develops into a full abolishment of late long‐term potentiation
Author(s) -
FernándezFernández Diego,
DornerCiossek Cornelia,
Kroker Katja S.,
Rosenbrock Holger
Publication year - 2016
Publication title -
journal of neuroscience research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 160
eISSN - 1097-4547
pISSN - 0360-4012
DOI - 10.1002/jnr.23701
Subject(s) - long term potentiation , synaptic plasticity , neuroscience , neurotransmission , hippocampus , neural facilitation , hippocampal formation , metaplasticity , nmda receptor , synaptic fatigue , synaptic augmentation , biology , medicine , receptor
Tg2576 mice are widely used to study amyloid‐dependent synaptic dysfunction related to Alzheimer's disease. However, conflicting data have been reported for these mice with regard to basal transmission as well as the in vitro correlate of memory, long‐term potentiation (LTP). Some studies show clear impairments, whereas others report no deficiency. The present study uses hippocampal slices from 3‐, 10‐, and 15‐month‐old wild‐type (WT) and Tg2576 mice to evaluate synaptic function in each group, including experiments to investigate basal synaptic transmission, short‐ and long‐term plasticity by inducing paired‐pulse facilitation, and both early and late LTP. We show that synaptic function remains intact in hippocampal slices from Tg2576 mice at 3 months of age. However, both early and late LTP decline progressively during aging in these mice. This deterioration of synaptic plasticity starts affecting early LTP, ultimately leading to the abolishment of both forms of LTP in 15‐month‐old animals. In comparison, WT littermates display normal synaptic parameters during aging. Additional pharmacological investigation into the involvement of NMDA receptors and L‐type voltage‐gated calcium channels in LTP suggests a distinct mechanism of induction among age groups, demonstrating that both early and late LTP are differentially affected by these channels in Tg2576 mice during aging. © 2015 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here